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Abstract A highly selective and sensitive fluorescent Zn2+

sensor N-(2-(benzo[d]thiazol-2-yl)phenyl)-2-((pyridin-2-
ylmethyl)amino)acetamide (1) that derived from 2-(2′-
aminophenyl)benzothiazole has been developed. In aqueous
solution (HEPES/CH3CN=4/6, v/v, HEPES 20 mM, pH=
7.4), sensor 1 displays highly selective recognition to Zn2+

over other metal ions with a distinct longer-wavelength emis-
sion enhancement. Sensor 1 binds Zn2+ through its amide
form with a 1:1 binding stoichiometry, which switched on
the excited-state intramolecular proton transfer (ESIPT).
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Introduction

Zinc plays crucial roles in a variety of biological processes
including apoptosis, regulators of gene expression, and neural
signal transmitters or modulators [1, 2]. Deficiency of Zn2+

can lead to unbalanced metabolism, which is responsible to
some problems such as retarded growth in children, the de-
crease of the immunological defense, eye lesion and some
skin diseases [3]. Overloading Zn2+ level in human body is
also associated with some serious neurological disorders such
as Alzheimer’s and Parkinson’s diseases [4–6]. As a conse-
quence, considerable attention has been devoted to the devel-
opment of fluorescent chemosensors for Zn2+ detection
[7–13], because fluorescence techniques can offer distinct
advantages such as low cost, simplicity, good sensitivity, and
capability of real-time detection [14].

Although a large number of Zn2+ selective fluorescent
sensors have been well established, many reported Zn2+ sen-
sors still encountered a difficulty in distinguishing Zn2+ from
Cd2+ [15–18], because Cd2+ is in the same group in the
periodic table with Zn2+ and usually induces a comparable
fluorescent response to that of Zn2+. Therefore, development
of small molecular fluorescent sensors that can clearly distin-
guish Zn2+ from Cd2+ is still challenging and imperative.
Fluorescence Zn2+ sensors generally contain two parts, a
Zn2+ receptor unit that can selectively binds Zn2+ ion and a
signaling unit that can responses the recognition event by
fluorescence changes. Besides the well-known dipicolylamine
(DPA) Zn2+ ion chelator, 2-picolylamine also has been widely
used as the Zn2+ binding unit [19–21]. Although a number
of fluorophores such as anthracene [22–25], coumarin [10,
26, 27], boron dipyrromethene [28, 29], fluorescein [30],
rhodamine [31, 32], cyanine [13, 33], benzimidazole
[34–36], and benzoxazole [19, 21, 37, 38] have been
employed to construct Zn2+ selective fluorescent sensors,
benzothiazole derivatized fluorescent sensors for Zn2+ de-
tection are still rare [39–41]. Therefore, we are encouraged
to design and synthesize a novel fluorescent sensor based
on benzothiazole fluorophore.

Owing to the potential ESIPT property of 2-(2′-
aminophenyl)benzothiazole (APBT) derivatives, design and
synthesis of new Zn2+ selective fluorescent sensors based on
APBT fluorophore aroused our great interest. In this work, a
simple and effective APBT-based fluorescence sensor (1) has
been designed and prepared (Scheme 1). Sensor 1 displays
highly selective response to Zn2+ with the appearance of a
strong longer-wavelength emission band, which makes 1 has
an excellent ability to discriminate Zn2+ from Cd2+ and other
metal ions. Sensing mechanism studies reveal that sensor 1
bind with Zn2+ through the amide form and the newly devel-
oped longer-wavelength emission band is attributed to the
ESIPT fluorescence emission.
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Experimental Section

General Methods and Materials

Unless otherwise stated, solvents and reagents were of analyt-
ical grade from commercial suppliers and were used as re-
ceived. Compound 2 was prepared following the method
previously described [42]. 1H NMR and 13C NMR spectra
were recorded on Agilent 400-MR spectrometer, chemical
shifts (δ) were expressed in ppm and coupling constants (J)
in Hertz. High-resolution mass spectroscopy (HRMS) was
measured on a Bruker micrOTOF-Q mass spectrometer
(Bruker Daltonik, Bremen, Germany). Low-resolution mass
spectroscopy (LRMS) was measured on an Agilent 1100
series LC/MSD mass spectrometer. Fluorescence measure-
ments were performed on a Sanco 970-CRT spectrofluorom-
eter (Shanghai, China). The pH measurements were made
with a Model PHS-25B meter (Shanghai, China).

Synthesis of Compound 3

A solution of 2-chloroacetyl chloride (0.34 g, 3 mmol) in dry
CH2Cl2 (5 mL) was added dropwise to a solution of com-
pound 2 (0.44 g, 2 mmol) and 4-dimethylaminopyridine
(DMAP, 0.5 g, 4.1 mmol) in dry CH2Cl2 (5 mL) in an ice
bath. The resultant was stirred for 2 h at room temperature and
then the solvent was removed by rotary evaporation. The
desired product 3 was recrystallized from acetone. Yield:
70 %. m.p. 144.1–144.5 °C. 1H NMR (400 MHz, CDCl3) δ
13.25 (s, 1H), 8.80 (d, J=8.4 Hz, 1H), 8.04 (d, J=8.1 Hz, 1H),
7.90 (dd, J=18.5, 7.9 Hz, 2H), 7.57–7.46 (m, 2H), 7.43 (t, J=
7.6 Hz, 1H), 7.22 (t, J=7.6 Hz, 1H), 4.31 (s, 2H). 13C NMR
(100 MHz, CDCl3) 172.6, 170.9, 157.5, 141.7, 138.4, 137.2,
135.4, 132.2, 131.3, 129.8, 127.7, 126.0, 125.3, 48.9. LRMS

(API-ES+) calcd. for C15H12ClN2OS [M+H]+, 303.0, found
303.0.

Synthesis of Sensor 1

Compounds 3 (0.30 g, 1.5 mmol) and 2-picolylamine
(0.195 g, 1.8 mmol) were dissolved in DMF and were stirred
overnight at room temperature. After removing the solvent
under reduced pressure, the residue was extracted with ethyl
acetate. The organic layer was dried over Na2SO4, filtered and
evaporated. The crude product was purified by silica gel
column chromatography to afford sensor 1 as yellow solids
(0.12 g, 65 %). 1H NMR (400 MHz, DMSO-d6) δ 12.96 (s,
1H), 8.82 (d, J=8.4 Hz, 1H), 8.53 (d, J=4.8 Hz, 1H), 8.16 (d,
J=8.0 Hz, 1H), 7.96 (d, J=8.0 Hz, 1H), 7.70 (d, J=8.0 Hz,
1H), 7.65 (t, J=8.0 Hz, 1H), 7.56 (t, J=8.0 Hz, 1H), 7.45–7.39
(m, 3H), 7.29–7.24 (m, 2H), 3.95 (s, 2H), 3.45 (s, 2H); 13C
NMR (100 MHz, DMSO-d6):171.7, 167.5, 153.0, 149.3,
137.3, 137.0, 133.6, 132.2, 131.9, 130.6, 127.0, 126.3,
124.2, 123.0, 122.7, 122.6, 122.4, 121.0, 54.3, 53.0. HRMS
(ESI+) calcd. for C21H19N4OS [M+H]+ 375.1280, found
375.1270.

Procedures of ion Sensing

Doubly distilled water was used for all experiments. Sensor 1
was dissolved in aqueous solution (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) was employed as
buffer agent, HEPES/CH3CN=4/6, v/v, HEPES 20 mM,
pH=7.4) to afford the test solution (10 μM). Titration exper-
iments were carried out in 10-mm quartz cuvettes at 25 °C.
Metal ions (as chloride or nitrate salts, 10 mM) were added to
the host solution and used for the titration experiment.

Scheme 1 Synthesis of
fluorescent sensor 1
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Result and Discussion

Synthesis

The synthetic route to sensor 1 is depicted in Scheme 1,
which involves the synthesis of APBT (2), amidation of
2 with chloroacetic chloride, and nucleophilic substitu-
tion of 3 with 2-picolylamine. The obtained compound
1 is fully characterized by 1H NMR, 13C NMR, and
HRMS spectroscopy, and the results are in full agree-
ment with the presented structure.

Fluorescence Recognition of Zn2+

The metal ion binding behavior of 1 was examined by fluo-
rescence spectroscopic studies. As shown in Fig. 1, sensor 1
showed a weak fluorescence in HEPES/CH3CN=4/6 (v/v,
HEPES 20 mM, pH=7.4) solution at 348 nm, which is
assigned to the normal excited state emission of 1. Upon
addition of Zn2+, a new strong emission band centered at
485 nm was observed. Concomitantly, the original emission
at 348 nm enhanced slightly. In addition, the Zn2+ induced
fluorescence change is naked eye detectable (Fig. 1, inset).
However, other tested cations promoted no distinct emission
shift and enhancement. These results indicate that sensor 1 has
an excellent selectivity to Zn2+ and can clearly discriminate
Zn2+ from Cd2+ and other metal ions. The influences of other
potential competitive metal ions on Zn2+ recognition were
then evaluated. In the presence of some metal ions such as
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Fig. 1 The fluorescence spectra of 1 (10 μM) upon addition of
various metal ions, including Zn2+, Cd2+, Cr3+, Mn2+, Hg2+, Ag+,
Pb2+, Fe2+, Fe3+, Ni2+, Co2+, Cu2+, Ba2+, Al3+, Sr+ (3 equiv. of each)
and Na+, K+, Ca2+, Mg2+ (100 equiv. of each) in aqueous solution
(HEPES/CH3CN=4/6, v/v, HEPES 20 mM, pH=7.4). Inset: Fluores-
cence color changes of 1 solution before and after addition of Zn2+

under irradiation at 365 nm
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Fig. 2 Fluorescence intensity changes of 1 (10 μM) to various metal ions
in aqueous solution (HEPES/CH3CN=4/6, v/v, HEPES 20mM, pH=7.4)
at 485 nm. The black bars represent the fluorescence intensity of 1
solution in the presence of 3 equiv. of miscellaneous metal ions; the red
bars represent the fluorescence intensity of the above solution upon
further addition of 3 equiv. of Zn2+
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Fig. 3 Fluorescence spectra of 1 (10 μM) in aqueous solution (HEPES/
CH3CN=4/6, v/v, HEPES 20 mM, pH=7.4) in the presence of different
amounts of Zn2+. Inset: Time-dependence fluorescence intensity of 1
solution in the presence of 3 equiv. of Zn2+
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Fig. 4 Normalized intensity of 1 solution (10 μM) against Log[Zn2+] in
the low Zn2+ concentration range
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Ag+, Pb2+, Sr2+, Ba2+, Cd2+, Mn2+, Cr3+, and Al3+, further
addition of Zn2+ ion still generated the similar fluorescence
changes (Fig. 2). Co-existence of some metal ions including
Co2+, Ni+, Fe2+, and Fe3+ could quench the fluorescence
intensity of 1-Zn2+ solution at 485 nm to different extent.
Notably, Cu2+ can completely quench the fluorescence emis-
sion of 1-Zn2+ solution at 485 nm. This phenomenon is often
encountered in many fluorescent sensors due to the paramag-
netic nature of Cu2+ [43, 44]. In addition, the biologically
abundant metal ions of Na+, K+, Ca2+, and Mg2+ displayed
no hinder effects on Zn2+ recognition even they were used in
high concentration as 1 mM. Thus, sensor 1 has a good anti-
jamming ability to other metal ions except Cu2+.

Fluorescence Titrations and Detection Limit

To obtain a better insight into the Zn2+ sensing property of 1,
fluorescence titration experiments with addition of increasing
amounts of Zn2+ were carried out (Fig. 3). Upon stepwise
increasing in Zn2+ concentration, the fluorescence intensity of
1 solution at 348 nm increased slowly, but the intensity at
485 nm increased sharply. The fluorescence spectra changes
stopped when 3 equiv. of Zn2+ was added. Moreover, time
course examination reveals that the response of 1 to Zn2+ can
finish within 1 min (Fig. 3, inset), indicating its rapid response
to Zn2+.

To check its practical utility, the fluorescence detection
limit of 1 for Zn2+ was evaluated. Based on the fluorescence
titration data at 485 nm, plotting of the normalized
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Fig. 5 Job’s plot for 1 and Zn2+ solution with a total concentration as
10 μM in aqueous solution (HEPES/CH3CN=4/6, v/v, HEPES 20 mM,
pH=7.4). The fluorescence intensity was monitored at 485 nm
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values in aqueous solution (HEPES/CH3CN=4/6, v/v)
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upon alternative addition of Zn2+ and EDTA
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fluorescence intensity of (Imin−I)/(Imin−Imax) versus log[Zn
2+]

afforded a nice linear relationship (R=0.99861), the point at
which this line crossed the ordinate axis was regarded as the
detection limit [45, 46], which was calculated to be 5.37×
10−6 M (Fig. 4). This result demonstrates that sensor 1 is
highly sensitive for Zn2+ recognition with micromolar level
detection limit.

Determination of Binding Stoichiometry

To determine the binding stoichiometry of 1 and Zn2+, Job’s
plot analysis was conducted. As depicted in Fig. 5, a maxi-
mum fluorescence intensity was observed when the mole
fraction of Zn2+ is 0.5, indicating the 1:1 binding stoichiom-
etry of 1 and Zn2+. Meanwhile, nonlinear least-squares fitting
of the titration profiles (Fig. 6) employing a 1:1 binding mode
equation led to a nice nonlinear curve (R2=0.9969) [47],
which also strongly supports the 1:1 interaction between 1
and Zn2+, and the association constantKawas calculated to be
2.97×106 M−1.

pH Effect and Reversibility

To apply 1 in more complicated systems, the influence of pH
on the fluorescence of 1 and 1+Zn2+ was examined (Fig. 7).
As for sensor 1, the fluorescence intensity was barely affected
when the pH ranged from 1 to 14. Upon addition of Zn2+, 1
solution exhibited strong fluorescence emission between pH 7
and 8. This result demonstrates that sensor 1 is especially
suitable to detect Zn2+ at near neutral pH conditions. The
reversible Zn2+ binding behavior was further evaluated by
alternative addition of Zn2+ and EDTA to 1 solution. The
fluorescence intensity of the solution exhibited alternative
enhancing and quenching processes (Fig. 8), indicating that
the Zn2+ recognition event is reversible.

Recognition Mechanism

The weak fluorescence emission of 1 at 385 nm can be
attributed to the emission of its normal excited state, and the
photoinduced electron transfer (PET) from aliphatic amine

Fig. 9 1H NMR spectra of 1 in
DMSO-d6 in the absence and
presence of 1.0 equiv. of Zn2+

Scheme 2 The proposed sensing
mechanism of 1 for Zn2+
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nitrogen to the excited state of phenylbenzothiazole moiety
decreased its emission intensity. Binding with Zn2+ could
suppress the PET process and allows fluorescence enhance-
ment. The remarkable enhancement of longer-wavelength
emission with a large Stokes shift (170 nm) of the 1-Zn2+

complex can be inferred as Zn2+ coordination promoted turn-
on ESIPT emission [48].

To elucidate the proposed sensing mechanism and clarify the
binding mode between 1 and Zn2+, 1H NMR spectra of 1 and 1-
Zn2+ were compared (Fig. 9). In free 1, the NH protons signal for
amide (Ha) and 2-picolylamine (Ha) appeared at 12.96 ppm
(Fig. 9a). In the presence of 3.0 equiv. of Zn2+, this signal up-
field shifted to 12.29 ppm (Fig. 9b), suggesting that 1 coordinates
with Zn2+ through an amide form [26, 49]. The signal appeared
at 8.82 ppm (Fig. 9a) can be tentatively assigned to He due to the
possible existence of hydrogen bonding between He with amide
O atom [35]. On addition of Zn2+, this signal up-field shifted to
about 8.35 ppm (Fig. 9b), indicating the coordination of amide O
atom with Zn2+, which weakened the hydrogen bonding. The
signal of protons neighboring pyridine N atom (Hd) at 8.53 ppm
up-field shifted to 8.50 ppm on addition of Zn2+. The methylene
protons (Hb andHc) signaling at 3.45 and 3.95 ppm, respectively.
These signals down-field shifted to 3.70 and 4.09 ppm, respec-
tively, on addition of Zn2+ (Fig. 9b), indicating that the alkyl
amine nitrogen atom also coordinated with Zn2+. The proposed
binding mode of 1 and Zn2+ was depicted in Scheme 2. Coordi-
nation of amideO atomwith Zn2+ greatly increased the acidity of
amide NH, which thus promotes H-transferred excited state
efficiently.

Application of Sensor 1 to Test Strips

To demonstrate the practical applicability of sensor 1 for the
detection of Zn2+, we carried out a preliminary paper test strip
experiment, as shown in Fig. 10. After immersing neutral filter
papers into the acetonitrile solution of 1 (1 mM) and dried,
Zn2+ solutions of with concentrations of 5×10−6 M and 5×
10−5 M were prepared in buffered water (HEPES 20 mM,
pH 7.4). When the dried test strips were dipped in different

concentration solutions of Zn2+ for 1 min and dried in air
respectively, the observed color change of test strips from non-
fluorescent to be blue under UV light at 365 nm clearly.
Therefore, the test strips experiment demonstrates the poten-
tial utility of 1 to detect Zn2+ ion.

Conclusions

A new off-on fluorescent phenylbenzothiazole derivative (1) has
been synthesized and proved to be a highly selective, sensitive
and rapid recognition Zn2+ sensor. Sensor 1 binds Zn2+ via a 1:1
stoichiometrywith an association constant of 2.97×106M−1, and
the detection limit is evaluated to be 5.37×10−6 M. Binding of
Zn2+ at the receptor moiety leads to the quenching of PET state
emission at 348 nm and the enhancing of ESIPTstate emission at
485 nm, which is responsible for the fluorescence enhancement
at the shorter-wavelength and longer-wavelength.We expect that
this example will serve as practical tool for environmental sam-
ples analysis and biological studies.
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